Redundant control of Ultrabithorax by zeste involves functional levels of zeste protein binding at the Ultrabithorax promoter.
نویسندگان
چکیده
Many biological processes appear to be controlled by functionally redundant genes or pathways, but it has proven difficult to understand the nature of this redundancy. Here, we have analyzed a redundant regulatory interaction between the Drosophila transcription factor zeste and the homeotic gene Ultrabithorax. Mutations in zeste do not affect the cis-regulation of the endogenous Ultrabithorax gene; however, the expression of small Ultrabithorax promoter constructs is strongly dependent upon zeste. We show that this difference is due to redundant cis-regulatory elements in the Ultrabithorax gene, which presumably contain binding sites for factors that share the function of zeste. We also provide evidence suggesting that zeste and the gene encoding the GAGA factor have an overlapping function in regulating Ultrabithorax. Furthermore, we show that the zeste protein is bound at equal levels in vivo to a Ultrabithorax promoter construct, which zeste strongly activates, and to the identical promoter region in the endogenous Ultrabithorax gene, which zeste redundantly regulates. These results suggest that zeste is significantly active in the wild-type animal and not simply a factor that is induced as a back-up when other activators fail.
منابع مشابه
Zeste-mediated activation by an enhancer is independent of cooperative DNA binding in vivo.
It is not clear how transcription factors bound at distal enhancer and proximal promoter sequences cooperate to stimulate transcription in vivo. To distinguish between different models for the action of enhancer elements, we have directly measured DNA binding of the Drosophila activator zeste by in vivo UV crosslinking. Experiments in Drosophila embryos show that binding of zeste protein to eit...
متن کاملThe specificity of protein-DNA crosslinking by formaldehyde: in vitro and in drosophila embryos.
Formaldehyde crosslinking has been widely used to study binding of specific proteins to DNA elements in intact cells. However, previous studies have not determined if this crosslinker preserves the bona fide pattern of DNA binding. Here we show that formaldehyde crosslinking of Drosophila embryos maps an interaction of the transcription factor Zeste to a known target element in the Ultrabithora...
متن کاملThe Drosophila zeste locus is nonessential.
Diepoxybutane-induced mutations of the Drosophila zeste locus were generated in an effort to obtain a null allele. Of 33 mutations of this X-linked gene isolated, 16 were associated with multilocus deletions of zeste and adjacent complementation groups, while the remainder were defects restricted to zeste undetectable by Southern blot analysis. Two of these multilocus deletions (Df(1)zdeb3 and ...
متن کاملdecapentaplegic, a target gene of the wingless signalling pathway in the Drosophila midgut.
dishevelled, shaggy/zeste-white 3 and armadillo are required for transmission of the wingless signal in the Drosophila epidermis. We show that these genes act in the same epistatic order in the embryonic midgut to transmit the wingless signal. In addition to mediating transcriptional stimulation of the homeotic genes Ultrabithorax and labial, they are also required for transcriptional repressio...
متن کاملA double-bromodomain protein, FSH-S, activates the homeotic gene ultrabithorax through a critical promoter-proximal region.
More than a dozen trithorax group (trxG) proteins are involved in activation of Drosophila HOX genes. How they act coordinately to integrate signals from distantly located enhancers is not fully understood. The female sterile (1) homeotic (fs(1)h) gene is one of the trxG genes that is most critical for Ultrabithorax (Ubx) activation. We show that one of the two double-bromodomain proteins encod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 122 7 شماره
صفحات -
تاریخ انتشار 1996